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Preface

The first step in completing a thesis is to choose either

a topic or an advisor. I chose Capt. Stanley R. Robinson as

an advisor. It was an easy decision, for his fame preceded

him. Together we chose to continue the research on antenna

arrays begun by Capt. Edward Raska Jr. and sponsored by Major

Jurgen 0. Gobien of the Rome Air Development Center. This

previous work had led to some interesting discoveries; phase

steered antenna arrays distort an incoming broadband signal

such that the output is the signal plus its first time deriv-

ative. The purpose of this continuing study was to investi-

gate the effects of adding tapped delay lines to the array

and adapting the array to place a null on jamming sources.

I spent many long hours gaining some knowledge of adap-

tive antenna arrays. Also included was the usual pleasure of

writing a computer program to support the numerical analysis

to be done. I tfink Capt. Robinson for bringing me back on

track the many times I became infatuated by computer plots

which led nowhere. Eventually the interesting research ended

and the drudgery of writing began. Though this phase took

much too long, I am especially thankful that Capt. Robinson

continued with his encouragement and support.

I wish to also thank Maj. Carl and Lt. Col. Carpinella

for the time they devoted to reading my draft and discussing

this project and its goals. It is truly unfortunate that

(Capt. Robinson has decided to leave this institution and
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move on to other endevors. I wish him well and extend my

thanks once more.

Finally, I am thankful to my wife, Laura, for her love

and patience not only during this research effort but during

this entire academic program, and beyond.

William A. Riski
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Abstract

This paper develops a complex baseband model for an adap-

tive array with N isotropic elements and T tapped delay

lines behind each element. Three aspects of arrays are repre-

sented: spatial and temporal propagation delays and the weight-

ing coefficients. The model is used to determine the steady

state effect of arrays on wideband signals. Optimum weights

are calculated based on the noise covariance matrix produced

by single and multiple narrowband jammers and single broad-

band jammers. It is shown that discrete spectral lines can

be used to model a broadband jammer. For a jammer with 4% f0

bandwidth, this approximation yields a correlation function

which is accurate to within 0.53%. For a linear, equally

spaced adaptive array the output consists of the input sig-

nal and its first time derivative. This first derivative

distortion is reduced' by the addition of tapped delay lines

only when the noise environment contains broadband jammers.

This performance improvement is quantified by increased null
•q

depth. The Improvement, for a 4% f0 bandwidth jammer, was

6.2 db with a jammer located at 100 and 2.5 db for a jammer

at 5*

(
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EFFECTS OF ADAPTIVE ANTENNA

ARRAYS ON BROADBAND SIGNALS

I Introduction

Adaptive antenna arrays have received considerable atten-

tion in recent years. One application of some interest is

their use in communications systems where reducing the effects

of undesired sources of interference yields improved system

performance (Ref 17,6). In an adaptive array, phase and am-

plitude of the signal at each receiving antenna element is

weighted and the resulting signals summed to produce the array

output. The values of the element weights are determined by

an algorithm which can act to steer the main antenna beam,

scan the beam across a target, stear nulls in the direction of

interfering signals, or meet several other system requirements

(Ref 14:212-213). Not all these requirements can be met con-

currently, but algorithms exist to steer the main beam in the

direction of a desired signal while steering nulls in the di-

rection of interfering signals. However, satisfactory perform-

ance requires that the interfering signals be much stronger

than the desired signal. If the interference is weak or ab-

sent, the desired signal itself may have a null steered in its

direction. In this situation, we can greatly improve the adap-

( tive arrays performance by being able to distinguish between a
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desired signal and the interference. The new algorithm can

then be constrained to avoid nulling the desired signal while

still nulling the interferences.

An information transmission technique whose signal struc-

ture can be distinguished from undesired signals is spread

spectrum modulation. This technique employs a pseudo-noise

binary phase shift keying (PN-BPSK) modulation scheme which

results in a transmitted signal whose spectrum is orders of

magnitude wider than the information spectrum of the unmodu-

lated signal. The pseudo-noise (PN) coded sequence has a

time-autocorrelation structure with a distinctive peak. It

is this correlation structure in the transmitted signal which

is exploited to differentiate between the desired signal and

undesired signals. Current technology permits the use of PN-

BPSK spread spectrum signals in conjunction with adaptive an-

tenna arrays (Ref 1).

An antenna array acts as both a spatial and temporal

filter. For an incident signal at a fixed arrival angle, the

array can distort the signals it receives, especially if they

are broadband signals. It is important to characterize this

distortion effect, since digital receivers using correlator

detectors can be quite sensitive to phase and amplitude dis-

tortion. Distortion can be divided into two categories:

static and dynamic. Static effects are inherent in the fre-

quency-sensitive nature of the antenna array. Dynamic effects

(are due to the adaptive nature of the array and the resultant

time varying response it produces. In this paper we shall

2



limit ourselves to the static distortion effects.

Recent analysis has begun in this area (Ref 11). How-

ever, this work addresses antenna arrays without adapted

weights or tapped delay lines. In this paper we will cal-

culate weights adapted to a noisy environment and use the

static value of these weights in the array model. The steady-

state response of the adapted antenna array will then be an-

alyzed. In addition, tapped delay line filters will be placed

behind each antenna element and the response of the array an-

alyzed. The addition of tapped delay-lines allows the assoc-

iated weights to adapt to the bandwidth of a noise source.

This results in a broader antenna pattern null in the direc-

tion of that source.

In Chapter II the analysis is begun by introducing the

various models and assumptions that are the basis for the en-

suing work. The basic properties of an adaptive array are in-

troduced. From this, a general transfer function equation is

derived. The chapter ends with an analysis of conditions nec-

essary for distortionless transmission of a signal through the

array.

In Chapter III we begin with a discussion of optimum

adaptive weights and the noise signals which drive these

weights. The noise covariance matrix used in calculating the

optimum weights is discussed with respect to narrowband and

broadband jamers. A Karhunen-Lo~ve expansion is used to de-

( rive a representation for the correlation function of a

3



broadband jammer based on discrete spectral lines. The chap-

ter ends with a numerical analysis of the correlation model.

In Chapter IV we look at the transfer function of a lin-

ear, equally spaced array with phase steering. Several graph-

ical results are analyzed for arrays with and without tapped

delay-lines.

In Chapter V we extend the transfer function analysis to

.arrays adapted to narrowband and broadband jammers. The

effects of tapped delay lines and jammer bandwidth on the

output signal's distortion are investigated.

Chapter VI contains conclusions and recommendations.

(
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II System Models

This chapter introduces a complex baseband model for the

desired signal and adaptive array transfer function. The fre-

quency response of the array is further analyzed using a Tay-

lor series expansion. From this we develop performance cri-

teria associated with signal distortion caused by the array.

A. Signal and Array Equation

The desired signal is written

A(t) - V(t) cos[2Tf.t+O(t)1 (1)

where V(t) and *(t) are amplitude and phase, respectively,

of an rf carrier at center frequency f0  . This can also be

written as

(t) - Re s(t)e (2)

where the complex baseband representation of the signal is

[j,(t)
s(t) - V(t)e (3)

and Re{.} denotes the real part of the enclosed quantity.

The center frequency term in (2) will be ignored from now on

and only the complex representation of the signal written.

The complex representation contains all the information of

the signalA(t) centered at f0 since modulation ofj (t)

5
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would either be amplitude modulation or phase modulation. In

either case, the information is contained in V(t) or $(t)

respectively. Therefore, there is an implicit time depend-

ence of e[- j2 fff t] when we use the complex baseband repre-

sentation s(t) (Ref 9:121).

Consider the geometry and system shown in Figure 1. The

configuration is for a one-dimensional array geometry. The

signal impinging on the antenna array elements is assumed to

have originated from a point source in the far field, or

Fraunhofer, region of the array. This region is defined to

begin at a distance of L2 /X from the array where L is the

largest array dimension and X is the wavelength of the wave

propagating from the point source (Ref 14:12). For these con-

ditions, the wavefront striking the array surface is a plane

wave (Ref 9:124). It is assumed here that the equiphase sur-

face of the plane wave is also an equiamplitude surface.

Therefore the signal at the array is a uniform plane wave.

This assumption is valid since any spatial variations in the

plane wave can be expected to be slowly varying in relation

to the delays it experiences in propagating between the array

elements at the rf frequencies of interest. The signal repre-

sentation in Eq.(3) is valid in the time-frame of the array

surface.

For the antenna array, our primary interest is in model-

ing the propagation and adaption effects under steady state

( conditions. In addition, the array is assumed to be "ideal".

6



POINT SOURCE

eX

WEIGHTING AND SUMMING NETWORK

OUTPUT

Figure 1. General System Model

The assumptions which define an "ideal" array are first, all

antenna elements are isotropic in nature. Second, mutual

coupling effects between elements are ignored since the array

has few elements. Third, practical issues of circuit ele-

ment nonlinearities, filtering and dispersive effects, etc.

are ignored. The analysis will consider an ideal adaptive

array as a filter and identify the fundamental distortion

effects it produces. Once identified, the limitations above

can be removed and their impact compared to the baseline

developed here.

There are three effects to model in the adaptive an-

( tenna array: spatial, temporal, and adaptive. Spatial effects

7
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are represented as time delays experienced by the signal as

it propagates across antenna elements. These delays are de-

pendent upon the angle of arrival e of the signal. Tem-

poral effects are represented as time delays experienced by

the signal as it propagates down a tapped delay-line be-

hind an element and are not angle dependent. Adaptive

effects are modelled as a complex term used as a multiplier

.on the signal at each antenna port. These complex terms are

referred to as adaptive weights, weighting coefficients, or

just weights. An antenna port can be either an element or a

tap on a delay line. Therefore an array with four elements

and three taps per element has twelve ports. The weights

are dependent upon the desired signal's and jamming signal's

statistics, power, and geometries relative to the array.

Figure 2 refines Figure 1 by detailing the array configura-

tion. The notation of Figure 2 is listed below:

w"g -Complex adaptive weight at the port defined by

the ith element and gth tap on the delay

line behind that element.

A Delay between taps in units of meters.

N Total number of antenna elements.

T Total number of taps per delay line.

y(t) - Array output.

%.(f) Matched filter transfer function, matched to

the desired signal.

(r(r) - Array output after matched filter.

8
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The total propagation delay of a signal from an antenna

port to a reference point can be represented as a time delay

tjg where i refers to the ith element and g refers to
th

the g tap on a delay line. This delay can be factored

into a spatial delay dependent on signal arrival angle and a

fixed temporal delay

t ilg - t i(8)+tg9 (4)

The assumptions used to identify the far field region of an

array also lead to an approximation for ti(6) . It is

ti (0 )  x i sin(e) (5)

c

where xi is the distance from the reference point to the

ith element and c is the velocity of light. As shown in

Figure 1, the direction of arrival of the signal e is

measured with respect to the array normal. This convention

results in the array broadside corresponding to 0=00

Temporal delay t corresponds to the propagation de-g

lay experienced by a signal in travelling along a delay line

from an antenna element (gAl) to tap g (see Figure 2).

The delay is dependent on the distance between taps and not

signal arrival angle. The temporal delay is

Y- (6)

where yg is the distance from the reference point to the

10
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th
g tap. The reader should not infer from the use of x1

and yg that the array is two-dimensional.

The distances to a port are represented in a rectangular

coordinate system. The reference point or origin is defined

as element one, tap one (i.e. i-1,g=l)

The complex adaptive weights contain an amplitude and

phase term. Both terms are independent of time since trans-

ient effects are not within the scope of this research effort.

The weight at the ith element and gth tap (i.e. port i,g)

is defined by

W i,g exp(j (7)

where Gi'g and ai g are real numbered values determined

by the equations discussed in Chapter III.

Since the signal at port i,g is delayed by amount

ti,g we can represent it as

4 i(t) ig

- Re{s(t-ti g)exp(-j 2 1Tfo(t-t g))}

(8)

The complex baseband representation for the desired signal at

port i,g is

a tg(t) - 8(t-t t ,g)exp(+j 2 fotig)

Note that with complex baseband notation, a delay results in

t 1.1



an additional phase term. The adaptive antenna array output

is the summation of the signals at each port, as defined in

Eq.(9), multiplied by their associated weight, defined in

Eq.(7). The array output is

N T
y(t) = Z rW s(t-t. )exp(+j2nfot i  ) (10)

i= g=1 ig ig ig

It is apparent from Figure 2 that the origin of the co-

ordinate system is not the geometric center, or phase center,

of the array model (Ref 15:72). The phase center of an array

is defined as the point at which the sum of the time delays

to each port is zero. To isolate the effects of this choice

of origin within the array representation, a phase center

term tc must be factored out. Propagation delay tc  is a

constant, for a given angle 6 , which is a measure of the

difference between the array's phase center and the arbitrarily

chosen coordinate system origin. The phase center is derived

from

N T
E g (ti+tg-t) = 0 (11)

i1l g=~g

N T N T
r El(ti+t) iZ £ t " NTtc (12)
1 1gm I i-1 g-l

Solving for the phase center term yields

12



N T
t- !(t+tg)

(13)
N T

i-i gfi1

Factoring t out of the array output yields

N T
y(t) = exp(j27rfot c ) Z E. w s"gS(t-tig +t c)

i=1 g-1 g

exp(J 2 wfo(ti,g-tc)) (14)

This factorization allows us to separate the effects of

our choice of coordinate system origin from the effects in-

herent in the generic array model itself. The first ex-

ponential corresponds to a constant phase shift. It is a

function, through t , of the relationship between the

signal location, phase center location, and the location of

the origin of the coordinate system. In addition, tc re-

sults in a constant time delay of the signal. Writttng

Eq.(14) in the frequency domain yields

Y(f) - e[J2w(f+fg)tc S(f)
i-1 g 1W S

[ij2'(f+fo)(ti,g-tc)] (15)

wbpre Y(f) and S(f) are the Fourier transforms of y(t)

and s(t) respectively. The system transfer function,

13



H(f,O) , is defined as the ratio of output to input forcing

functions. From Eq.(15) the transfer function of an adaptive

antenna array is

(j2(f+f0)t N T (j2f(f+fo)(t ig-t )H(f,e) = E E w e (16)
i=l g=1 ig

The dependence of this function on frequency is shown ex-

plicitly. Its dependence on signal arrival angle 0 is im-

plicit in tiog as was shown in Eq.(5). The reader is re-

minded at this point that we still are working with complex

baseband notation. Therefore frequency f is still defined

as a frequency offset from fo . The transfer function is

dependent on several other parameters which are defined by a

particular system (signal and array) configuration. These

parameters are the weighting coefficients (Gjig and ai g)

and array geometry (xi.,y ,N, and T) . (See Eqs.(7), (4),

(5), and (6)). Although H(f,6) is dependent on these

parameters, they are all fixed, for a given system, in the

steady state analysis of subsequent chapters.

One of the main objectives of this thesis is to investi-

gate the distortion experienced by wideband signals as they

pass through an adaptive array. It is the analysis of Eq(16)

which will reveal any distortion. H(f,6) must meet two con-

ditions for distortionless transmission of signals. First,

its amplitude response (IH(f,6)I) must be constant over the

frequency spectrum of the desired signal. Second, its phase

14



response (arg must be linear over the same fre-

quency spectrum. These conditions will result in all spec-

tral components of the input signal having the same attenua-

tion and phase shift at the array output. In the time domain,

the output signal will be a scaled, delayed replica of the

input signal.

B. Frequency Response

To explore the frequency dependence of H(f,e) further,

the function is expanded into a Taylor series about f=O .

(Since the expression is in complex baseband representation,

this corresponds to expanding physical quantities about the

center frequency fo .) It is assumed here that the adap-

tive weights are independent of frequency f . This corre-

sponds to steering the array at center frequency f0  . The

series is

[j2w(f+fo)tc] N T [j2rfo(ti -tcI +HMO,) e r E w i e 1+

i=1 g=1 'g

(j2wf(t i -t)) + (j2nf(t ig-t c))2
,g c + .. +

2!

(J2wf(t. ,-tc)
n

119 + (17)

ni
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_e [J27r(f+fo)tcl A()+(j2wf)B(B)+(j27f)2C(e)+...1 (18)

where

N T [j27fo(t i -Ae A zE w , e (19)t

ACO) - i=1 g=1  g (19)

and

N T [j2Irfo(ti-t)]
B(e) Z E w (t -tc)e c (20)

i-i g1 ig iog c

and

N T t j2rfo(t. -t )I

C(e) A w ig c (21)
i=i g=1 i g

If we define 0 as the bandwidth of the desired signal

s(t) , then conditions for distortionless transmission by

filter H(f,e) can be stated more specifically (Ref 13:351-

355). First, a constant amplitude response is achieved if

If(tig-tc)1<<l for f in 8 and all i,g (22)

This is apparent from Eq.(16). Secondly, another condition

becomes apparent once we have performed the series expansion

in Eq.(18)

; 16



2InfB(6)
« 1 for all f in (23)

The condition of Eq.(22) would be sufficient for a constant

amplitude response if H(f,G) could be completely represent-

ed by the first term in the Taylor series; i.e. H(fe) -

A(e) . This is true for input signals which are monochroma-

tic; i.e. f=O . Nearly all antenna work makes this assump-

tion or assumes the signal is narrowband enough to be validly

modelled as monochromatic. The common nomenclature for this

first term (A(e)) is the array factor. It is used to de-

termine many properties of arrays including the radiation

pattern of the array, the main lobe location and beamwidth,

null location, and sidelobe characteristics (Ref 14:chapter 1).

The frequency response of an array in the vicinity of a null

is often analyzed and the results then referred to as the

radiation pattern. Though this is not absolutely correct, a

strong duality exists between the frequency response and an-

tenna pattern in the vicinity of a null. Appendix A contains

a perturbation analysis which explains this relationship.

The second condition (Eq(23)) implies that meeting the

first condition alone does not result in distortionless trans-

mission. In the vicinity of an antenna pattern null, the

first term approaches zero while the second term may not. In

this case the transfer function is dominated by the second

17



term which has linear variation with frequency across the

band of interest. A performance measure of this situation is

developed in a later section and is used to analyze several

system configurations in subsequent chapters. This second

condition of distortionless transmission can be extended

to a third condition by requiring that

(2,Tf)2 C(8) <<1 for all- f in 8 (24)
[ A(O)

If A(e) and B(O) both approached zero then H(f,O) would

be determined by this third term in the series. It will be

shown in later chapters that the magnitude of C(O) is neg-

ligible, as compared to A(8) or B(O)

The effect of the higher order terms in the transfer

function upon the desired signal can be interpreted in the

time domain by recalling the differentiation theorem of

Fourier transforms. Using Eq.(18) and (15) yields

Y(f) = S(f)H(f)

= S(f)A(8)+(2f)B(e)+(j2f)2C()+...]e 
+ )c

(25)

18



In the time domain this is

l ds(t-t)

y(t) = A(O)s(t-t c)+B() +
C dt

d2s(t-t c) d ~- ) N T
(e) C + ...+ d 1t- 1

dt7 dtn n! i.l g-1

W, *g(t, gti, gtc)] J2Tftc (26)

Recall that with complex baseband notation a monochromatic

signal is written as a complex constant. Thus it has no de-

rivatives and the output of the array is just the first term

of the series in Eq.(26)(including the constant phase offset

due to the phase center exponential term). However for

broadband signals Eq(26) shows that the array output is the

sum of the signal and all of its time derivatives. This

characterization of the actual waveform distortion experienced

by a broadband signal as it is processed by an antenna array

was first derived and studied by Raska for arrays without

adaptive weights and without tapped delay lines (Ref 11).

Similar analysis exists for multipath effects on a communi-

cation channel (Ref 13:351-355).

As Eq(26) reveals, the distortion in the array output

consists of all nth order derivatives of the input signal.

The following section describes a particular signal of inter-

est and its first time derivative.
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C. Signal of Interest

Several types of modulation can be used to spread an in-

formation signal to produce a spread spectrum signal. We will

only consider direct sequence modulation (Ref 5:3). This is

defined as modulation of a carrier by a digital code sequence

whose bit rate is much higher than the information signal

bandwidth. To reco-er the information signal at a receiver,

the spread spectrum signal is modulated again with the same

digital code sequence. This compresses the information back

down to its original bandwidth. The type of code sequence

used for modulation, and which must be known at the receiver,

is called a pseudo-noise (PN) code.

A pseudo-noise signal can be thought of as a train of

±1 pulses that switch states randomly at a high rate (such

as 5M Hz). The pulse train, p(t) , becomes periodic after

some fixed number of pulses has passed. An n-bit shift

register, with proper feedback connections, can produce a

PN code of length 2n- 1 bits. The entire periodic sequence

is called a code word, with each bit of the code referred to

as a chip (Figure 3). PN codes have two properties of par-

ticular interest which led to the implementation of correla-

tion receivers for demodulation of spread spectrum signals

(Ref 5:55). First, the distribution of bits within a PN code

word is random. Second, the code word has an autocorrelation

with a peak only at the zero shift point. Its value is nearly

zero if the time shift is a full chip width or greater. These
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Figure 3. Pseudo-Noise Waveform

two properties are related since only a truly random code

would have an autocorrelation function which approaches a

delta function. Because the correlation function of a PN

code resembles a delta function, it looks like white noise

when used to drive a system whose bandwidth is small com-

pared with the inverse chip period (thus the name "pseudo-

noise" code). The correlation peak provides an excellent

signal discriminant to be used in receiver design, and adap-

tive weight algorithms. Correlation receivers perform a

correlation of the received signal with the PN code and use

the resultant correlation peak for synchronization. If an

adaptive array distorts the received spread spectrum signal
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enough, the pseudo-noise code characteristics of the signal

can be lost and the correlation receiver will produce a dis-

torted correlation waveform. If distortion is enough to pre-

vent synchronization between the signalb PN code and the re-

ceivers PN code, the receiver will be unable to recompress

the received signal down to its original bandwidth and the in-

formation will be lost. Therefore, instead of looking at the

spread spectrum signal directly, we will investigate the

effects of the adaptive array on the correlation function of

the PN code.

The autocorrelation function of a PN sequence is a tri-

angular waveform of height CTc and width Tc , where Tc

is still the chip period and C is the code length (C-2n-l)

(Ref 5:64-67). This waveform can be normalized by 1/C to re-

move the code length dependence (Figure 4). In Figure 2 we

have the array output passing through a filter matched to the

input s(t) . Filtering the signal by this matched filter is

equivalent to the correlation operation performed in a re-

ceiver. The Fourier transform of a matched filter is

H.(f) - S*(f) (27)

where S*(f) is the conjugate of the Fourier transform of

signal s(t) . Using Eq.(25) the output is written
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Figure 4. Autocorrelation Waveform

R(f) - Y(f)HM(f)

- Y(f)S *(f)

- S(f)H(fe)S *(f)

- IS(f)1 2H(f,e) (28)

where IS(f)12 is the transform of the autocorrelation func-

tion of the desired signal, and R(f) is the transform of

the output correlation function. Substituting Eq(18) for

H(f,O) and taking the inverse transform into the time do-

main yields
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I drs('r-tc)

r(T) - A(e)rs(T-tc)+B(e) +
dT

dars(T-tc) te(i2wfotc)
C(e) + ... e (29)

dT2

where r s(T) is the autocorrelation function of the desired

signal, s(t) . The distorted matched filter output is seen

to be a complex weighted sum of the desired signal's auto-

correlation function and its derivatives. The results of

Eq.(26) and Eq.(29) are equivalent with respect to signal

distortion. In Eq.(26), the desired signal is very general

in nature. Equation (29) assumes that we have added a match-

ed filter to the array and therefore the desired signal is

an autocorrelation function. The definition of H(fB) is

unchanged in either case since it is of course independent of

the signal waveform. To quantify the distortion due to

H(f,O) , the signal of Figure 4 will be used to illustrate a

performance criteria.

D. Performance

The condition of Eq.(23) can be used to give a measure

of the angular displacement around the array where the output

of the array is dominated by the first derivative of the desir-

ed signal. This condition is dependent on the particular sig-

nal of Interest, since it is evaluated only for frequencies

within the bandwidth of the signal, B From Eq.(29), we
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can see that an equivalent time domain condition is that

dr s (T-t c )B(e) <<1 (30)

rs(-t c )A(e)

Rearranging and defining a threshold n we get

dr s(T-t )

A(6 e _(31)IS(e)l rs(T-t c )

where n is a time-bandwidth product. For the correlation

function of spread spectrum signals, shown in Figure 4, we

see that near T=O the ratio of the signal derivative to the

signal is

dr s(T-t )

dT T 1 (32)
r s(T-t c ) c

From the Fourier transform of rs () , the first zero cross-

ing occurs at frequency 1/Tc  . Since rs (T) is not band-

limited, we cannot uniquely specify its bandwidth. The ques-

tion now becomes what filter bandwidth is sufficient to pass

the signal undistorted. Dixon has shown that power spectrum

of the form sin.x2 contain 90 percent of their total power

within the main lobe. However, if the filter bandwidth is re-

stricted to the signals main lobe, the sharply peaked triangu-

lar shape of the signal is rounded off (Ref 5:20-21). The
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designer of an antenna array-correlation receiver system must

decide on the correlation pulse distortion which is acceptable.

This will determine the array filter bandwidth. A wider filter

bandwidth results in an output signal of higher fidelity. The

necessary bandwidth can be defined in terms of the number of

sidelobes included from the (sin x/x) 2 power spectrum. The

signal bandwidth is

= i- (3 3 )

c

With this signal bandwidth the filter bandwidth must be at

least n/T . Looking at Eq.(31), we now have

cc
A - (34)

The ratio on the left is interpreted as the array filter

bandwidth as a function of signal arrival angle. Eq.(34)

states that the filter bandwidth must be at least as large as

the signal bandwidth.

Using the specific values in Figure 4 for Tc , and

assuming that the bandwidth of the correlation pulse is de-

fined as including the main lobe and four sidelobes of its

power spectrum, we have

A(8' a-. 10 m5x10'HZ (35)IM ! T c 2xlO - "
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Taking logarithms yields

log A >( 6.7 (36)

This threshold will be used as a benchmark in the analysis

of Chapter IV.

Eq.(24) identified another condition for distortionless

transmission of a signal through the array. It is that

d2 rs (t-t )
A P(1- I > . . dT (37 )

rs('r-t c

It is apparent from Figure 4 that for the PN-BPSK signal of

interest the right side of this equation evaluates to 106

Later chapters will show that this condition is always met

for the scenarios analyzed.

For the second time derivative term to be insignificant

a condition to be met is d

d~rs(t-t )

B 0e) > d(.T') (38)- drsa(-r-tcd

dT

For the signal of interest the right side of this equation

evaluates to 0.5 . Research has been done into the auto-

correlation functions and their time derivatives, for other

modulation techniques (Ref 3). The performance expressions
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in Eqs.(34), (37), and (38) were evaluated for these mod-

ulation types. The values obtained are on the same order

of magnitude as those shown here for PN-BPSK signals. There-

fore results based on these values are valid for several

common modulation techniques. In Chapter III we derive the

expressions used to determine the adaptive weight values.

They are based on the array geometry and the power, band-

width, location and stochastic nature of the desired signal

and noise sources.
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III Adaptive Weights

This chapter begins with an introduction to adaptive

arrays. The widely accepted equation for optimum weights

is presented. It is based on the use of a noise covariance

matrix. The noise environment represented in this research

is analyzed by using a Karhunen-Lobve expansion. This leads

to a representation for broadband jamming sources which is

used in subsequent chapters to calculate the optimum weights.

A. Optimum Weights

The most widely used objective in calculating the weights

is to minimize array output noise power, where the noise con-

sists of both thermal noise and jammer noise. This is done

by using weights which result in the array's receiving an-

tenna pattern having nulls in the direction of jamming sources.

In order to maximize signal and minimize noise out of the

array, some a priori knowledge is necessary with which to dis-

tinguish the signal from the noise. This discriminant can in-

clude information either about the signal or noise, or can rely

on their differences. Some useful discriminants are the signal

waveform, spectral differences between signal and noise, direc-

tions of arrival, polarizations, and power levels (Ref 8:13).

One or several of these can be used such that only the inter-

ference is cancelled. Direction of arrival of the desired

signal is used in this paper.
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It has been shown that the set of optimum weights is

given by

S= $-i (39)

q

where the covariance matrix $ is a matrix of cross-covar-

iances and autocovariances of the input noise signals at each

antenna port (Refs 17,6,12). Subsequent sections of this

chapter develop a representation for the noise signals which

is used to explicitly define the covariance matrix. 'he col-

umn vector of optimum weights W is defined as

W1,2

*= : (40)
Wi,g]

WN,TJ

The quiescent weights *q are chosen to steer the main an-

tenna array beam in the direction of arrival of the desired

signal, independent of the jammer environment (e.g. in a

"quiescent" environment). This direction of arrival is as-

sumed known a priori. The quiescent weights are determined

explicitly in the next chapter (see Eq(75) and (78)).

One of the differences between various adaption algorithms

is the information which is known a priori. It is to be ex-

pected that as the estimates for the unknown information
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improves, the weights calculated from algorithms converge to

the optimum weights defined in Eq(39) (Ref 12:19). Since the

scope of this paper is limited to analyzing the steady state

response of the antenna array transfer function, the optimum

weights are simulated assuming known signal parameters. There-

fore the results of this paper are independent of the adaption

algorithm used.

The emphasis in the rest of this chapter is on develop-

ing explicit expressions for I . If the noise environment

only contains monochromatic jammers, then I can be calculated

given the thermal noise power and the power, frequency, and

direction of arrival of all jammers. This simplifies the

numerical evaluation of the optimum weights. The next sec-

tion evaluates the covariance matrix for the general case of

a jammer with bandwidth. It is then shown that for large

time-bandwidth products, monochromatic jammers can be used

to adequately approximate a broadband jammer.

B. Noise Environment

The noise signals include both directional noise sources,

which propagate as uniform plane waves, and thermal noise at

the front end of the array, which is assumed independent from

one antenna element to the next. Each of the M spatially

discrete jamming sources is assumed uncorrelated with all

other jammers. The jamming signals are defined at rf fre-

quency as
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OPm~ m(t co[2nf.pm tO
- )COSr2wf~tp_(t )-ol

m-l,2, ... , M (41)

The modulation Fm(t) and p (t) are sample functions from

independent random processes. The independent random variables

a , which are uniformly distributed on [0,2n] , are added

to ensure stationarity (Ref 10:303]. The random processes are

also assumed ergodic. In complex baseband notation the mth

Jammer is

Jm(t) -Em(t)exp[jpm(t)+al (42)

The expected value of J_(t) is zero. The zero-mean thermal

noise is modelled as bandlimited noise with one-sided power

spectral density of No watts/m2-sec. The bandwidth of this

noise is assumed large as compared to the bandwidth of the

array. Therefore the propagation delays between antenna el-

ements and between taps on a delay line are assumed larger

than the coherence time of the thermal noise. The autocorre-

lation function of the noise is then a delta function of

height No and the cross-correlation between any two ports

is zero.

The elements of the noise covariance matrix are a function

of phase differences between ports, and therefore time delay

differences. The use of the double subscript (ig) leads to
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cumbersome notation. Therefore for the rest of this chapter

the delay associated with the mt h jammer at port i,g will

be denoted as tmk where k=l,2,...,K. The term K equals

NxT , the total number of ports. The delay at a different

port will be denoted as tmA . Since the noise covariance

matrix is a function of phase differences, the phase center

of the antenna array does not need to be considered as it

was in Eq.(14). Therefore the coordinate system by which the

delays tk are determined is irrelevant, as long as we are

consistent. In the computer simulation used to support the

following chapters, the coordinate system is the same as that

described in Chapter II.

Using this notation, the total noise signal at port k

is

M

k(t) I = m(t-tmk)exp[j21rfotmkl+kk(t) (43)

m=l

where k(t) is the complex baseband representation for the

thermal noise. Note,.that tmk is dependent on the array

geometry and jammer location.

C. Noise Covariance Matrix

The noise covariance matrix $ is composed of the ex-

pected value between the noise signal at port k and every

other port, for all k . The noise signal of Eq.(43) is used

in evaluating the expectation. Since both Jm(t) and k(t)
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are random processes with zero mean, the matrix is actually

a correlation matrix. Using a superbar 1"- " to denote

ensemble average, the covariance matrix is written

SNk(t) Nk(t)

*- ..

N(t) N 1 t) Nl(t) NK(t)

(44)

Each element of this matrix consists of the sum of autocorre-

lation functions for each jammer, and the autocorrelation func-

tion of the thermal noise, evaluated at a time differential

T The time differential is the difference between the

time delay t mk  to port k and the delay tmk. to port k'

i.e. the kk' entry of the matrix.

Consider the case of one jammer (M-1) . Evaluating the

kk* entry due to only this emitter yields
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(J2rrfotk) * (i2irfotk,)
j(t-tk )e (jvo (t-t k'O)e jntko

=e(j2wfo(t k-t k) e(t-t k )*(t-t k-)
=e

(j21rfo(tk-tk-)
= e Rj(tk-.-tk) (45)

However

Rj(tk.-tk) A f Sj(f)ekdf (46)

where RJ(') is the autocorrelation function of ,(t) and

S (f) is the associated power spectral density. The kk'

entry of 0 with M jammers and thermal noise is then

R
9k( t ) k(t) I RJm(t mk'-tmk)

m-1

e jwft ktk +No6 kk' (47)

where 6kk' is a Kronecker Delta function.

D. Karhunen-Lobve Expansion

Equation (47) was implemented in a computer program

assuming the jammers were monochromatic signals. It was

later decided to investigate the effects of broadband
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Jammers on the results. The derivation to follow showed

that the narrowband jammer implementation could be used

since the correlation function of a broadband random pro-

cess can be approximated .using discrete spectral lines.

Consider the following model expansion of the complex

random process ,(t) along a complete orthonormal (CON) set

of basis functions { p(t)} over a finite time interval

-T-/2, T'/2

= l.i.m. 4mm(t) (48)
M-*ca wi-U

for -T'/2<t<T'/2
To

where m f (t)O*(t)dt (49)

-TA

The notation "l.i.m." denotes limit in the mean, implying

a mean-square convergence of the sum in Eq.(48) and m is

the integer index of the mth temporal mode. Note that

{*ml(t) is a set of complex functions yet to be specified.

In addition, since .(t) is assumed to be a zero-mean, com-

plex random process, {'m} are zero-mean, complex random

variables.

By proper selection of basis functions {m (t)} it is

possible to expand j(t) so that the coefficients of the
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expansion Qm } are pair-wise uncorrelated,

=(50)

for m f m'

A necessary and sufficient condition for the {m} to

be uncorrelated is that the basis functions { m(t)} are the

solutions to the Fredholm equation (Ref 16:180)
To

YmVm(t) f f Rj(tit,)*m(t')dt' (51)

-T

for -T'/2<t<TO/2

The numbers {y } are the real eigenvalues associated

with the eigenfunctions {*m (t)} for all integers m(--<m<-).

The series expansion of ,(t) on a CON set of eigenfunctions

over an interval yielding uncorrelated random coefficients is

known as a Karhunen-Loeve (KL) expansion. If the basis func-

tions (m M(t)} of Eq.(48) are solutions to the Fredholm

Eq.(51) then the model expansion of ,(t) is such an expan-

sion.

Results from linear integral equation theory lead to

several properties of integral equations (such as the Fred-

holm equation above). One of these properties is known as

Mercer's Theorem (Ref 16:180-181). It states that any square

integrable kernel Rj(t,t') of Eq.(51) may be expanded in a
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series.

R (to tA) Y 0 M O*)W~t) (52)

for -T'/2<t,t'<T'/2

where the convergence is uniform for -T'/2<t,t'<T'/2 . It

can be shown that if the correlation function of a zero-mean,

complex random process (t) can be expanded in a form of

Eq.(52) the model expansion given in Eq.(48) will converge in

the mean-square sense (Ref 7:409).

For stationary random processes characterized over long

time intervals I-TA/2,T/21 , it can be shown that the

eigenvalues {y and associated eigenfunctions {0 (t)}m m
which are solutions to the Fredholm Eq.(51) can be approximated

by (Ref 16:205-207)

Y 1 , (53)

and

(t) = exp[j2TR.tj (54)

for -T'/2<t<TA/2

Here T' is again the characterization interval in sec-

onds and Sjty) is the power spectrum of the complex random

process, defined in Eq.(46), sampled at frequencies T.Hertz.

The magnitude of T' needed for the approximation to
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be valid depends on how quickly Sj(f) varies near frequency

T, .For smooth spectra, long T means long compared to

the fluctuations of the jamming signals envelope

T' >> 1 (55)
B J

where j is the jamming signals bandwidth.
1

Therefore if T' is several times greater than
J

then the basis functions {Vm (t)) of the expansion over a

time interval of length T' became the complex exponentials

of a Fourier series expansion. It can be shown that the co-

efficients of these complex exponentials became uncorrelated

as the interval T gets long (Ref 4:94). The eigenvalues

{ym I become samples of the power spectrum Sj(f) evaluated

at the harmonic frequencies of the Fourier series expansion.

Thus, for long characterization time T , the Kar-

hunen-Lobve expansion for ,(t) becomes

j2m t
= e  (56)

for -TO/2<t<T/2

where TA

-j 2ryrt t(7

im f ,me(d (57

-T
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The expected value of the energy of (t) in time in-

terval [-T'/2, T/2] is defined as
T o

E f J (t) (t)*dt

-T'

V (59)
m-

where the modal expansion for ,(t) has been used. Using

Mercer's theorem Eq.(52), the mean energy of the process for

long characterization time T' is

E sA (60)

Equating each term in Eq.(59) and (60) and using Eq.(50) pro-

duces

"'F' 1 m

mm= Sj (T-0) nun (61)

where 6mm is again the Kronecker delta. Therefore, for long

characterization intervals, the mean-square value of each ex-

pansion coefficient {J m} is the power spectrum evaluated at

the coefficient's harmonic frequency.

Since the modal expansion coefficients have been chosen

so as to be pairwise uncorrelated, the correlation function

of the complex random process ,(t) can be written
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Rj(t't-) =

=- S S(T-I)exp[j27r-.(t-t )] (62)

for -T'/2<t<T'/2

Note the similarity between this expression and Eq.(47).

Equation (62) can be considered as an entry in the noise co-

variance matrix produced by an infinite number (depending on

Sj(-)) of narrowband jammers. To emphasize this we will start

with Eq.(47) and apply it to a group of narrowband jammers

chosen to represent a single broadband jammer.

Narrowband jammers which are not necessarily at center

frequency yield a noise signal at port k of

M [+j2w(f -f m )t mk]

Mk(t) = me  +Ak(t) (63)

m-1

where fm is an offset frequency from center frequency for

the m t h  jammer. This leads to the kk' entry in the co-

variance matrix, from Eq.(47), as

M (j27r(f 0-f )( ))
Nk (t) Nk(t) I ImJ emk-tmk' +NO6 k (64)

m-1

We choose to model a single broadband jammer as a sum of
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narrowband jammers each at a different frequency but all at

the same spatial location (i.e. tmk=tk and tmk tk' for all

m ). The broadband jammer is assumed to have a flat power

spectral density. Therefore each discrete spectral line has

equal power PN (i.e. PN=IJm 12 for all m). From Eq.(64), the

kk' entry in the covariance matrix due to jammers alone, be-

comes

M (j2r(fO-f m)T)

ftkk. (T) = PNe in(65)

in1

The frequency offsets are defined to be

8j
f1 Jfm - (m-1)af, m=l,2,...,M (66)

where Bf is the spacing between discrete spectral lines (see

Figure 5).

To equate the results of the Karhunen-Lobve expansion in

Eq.(62) with Eq.(65) it is assumed that the power spectrum in

Figure 5 is for process ,(t) , and that

1 ___

1"i f =A af - (67)

The correlation function of Eq.(62) can be written

8 pj (j2f MT)

Jn- j e (68)
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Figure 5. Power Spectral Density of Broadband Jammer
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Exploiting the symmetry of the correlation function and in-

corporating the phase term associated with complex baseband

representation, yields

M p (j2n(fofm )T)

RI() = e (69)

This expression is nearly equivalent to Eq.(65). They differ

only in the weight placed on each spectral component (i.e.

Pj/(M-1) versus PN ) .

Note that the total power in ,(t) from Figure 5a. is

P .In implementing Eq.(65) in the computer program used

later the power in each spectral line was chosen as

PN =  - (70)

so that the total power in (t) is Pj.

From Eq.(69), the total power in ,(t) is (M--) P .

Note that as the number of spectral lines becomes large, this

expression approaches Pj . Therefore for large M Eq.(65)

is equivalent to Eq.(69).

Summarizing, it has been shown that a Karhunen-Lobve ex-

pansion of ,(t) supports the approximation of the correlation

function for a broadband jammer by discrete spectral lines.

To quantify this approximation, a numerical analysis follows.

E. Numerical Analysis of Model

The correlation function approximation of Eq.(65) can be
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written in closed form. Using a geometric series identity

and Eq.(66), we get

= (j 2 fffoT)j(f.yf T 71
Rkk.(T) = PNe sin(2rf (71)sin(2n f 7)

Normalizing this expression by total power yields

Rkk'(T) 1 (j2fffoT) sin(M27Tafj)Rkk e s 2 (72)R kk-(T) 'T=0 sin(2nSf.1)

The complex baseband correlation function is defined in

Eq.(45) for a single broadband jammer at center frequency.

Using the power spectral density in Figure 5a., Eq.(46) eval-

uates to

Rj(T) = i n(WT (73)

Substituting Eq.(73) into Eq.(45) and normalizing by the

total power, produces

Rkk '.(T) j22f 0T sin(7TOj)
R ek (T74)ra

T-0

Inspection of Equations (72) and (74) reveal that the complex

correlation functions have equal phase information, since the

exponential terms are identical. The envelopes of these
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complex functions both approach unity for small arguments of

the sine function. The worst case analysis is for maximum

time delay differential (T max). This occurs when the

jammer is located at 0=900 (endfire) and the correlation

function is evaluated for signals at ports located at oppo-

site extremes of the array. In Figure 2 this would be port

1,1 and port N,T. Table I shows the percent error between

the approximate correlation function (Eq.(72)) and the actual

correlation function (Eq.(74)). The calculations are for two

jammer bandwidths and two array geometries using Tmax. The

errors are very small (less than 2%). The conclusion is that

Eq.(72) is a good approximation for the correlation function

of a broadband jammer.

Equation (64) is implemented in the computer simulation

used to produce the results discussed in subsequent chapters.

The covariance matrix depends on three jammer parameters,

which can be different for each jammer. These parameters are

total power (77T7) ,frequency offset (f ' ,and spatialM.

location (0M )

The analysis of transfer functions for a 1 near, equally

spaced array begins in Chapter IV. No noise sources are

present; the quiescent weights are chosen for phase steering

of the array's main beam.
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Table I. Broadband Jammer Correlation Function

Correlation Approximate Percent
Param- Function Correlation Error A
eters R (T) Funct ion Eetr jTj - Rj(T) =3 - 4

sin(ifta J) 1 sin(MTrTf) 3
(ITT ~ i $ TSin(rrT6f)

N-4 aj=4%f 0.9895 0.9843 0.53%

T-3 M-5

- t1 1-t4 3  =1 %f 0.9355 0.9229 1.35%
-2/f0  14=11

NJ2 0.9974 0.9956 0.18%
T-3 14=5

Ill l-t 2,31- a =10%f

1/fo M 1 0 0.9836 0.9804 0.33%

Column 1 2 3 4 5

f MfO
f- - 350MHz
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IV Antenna Arrays without Adaptive Weights

In this chapter the transfer function of an antenna array

with weighting coefficientg chosen for phase steering is an-

alyzed. First, an expression for the transfer function is

developed, assuming phase steering at center frequency. Second,

several assumptions are made about the array's geometry which

allow the transfer function to be expressed in a closed form.

Third, for a given steering angle, the transfer function for

an array without tapped delay lines behind each element is com-

pared to the transfer function for an array with delay lines.

A. Linear Array

A common steering technique used extensively today is

based upon electrically steering the main beam of an antenna

array. Phase steering, as it is entitled, is done by delay-

ing the signal at each array port by a specific amount. This

changes the arrival angle at which all signals (at the array's

output) are in phase, from broadside to some steering angle e 

For phase steering, the weighting coefficients at each

port vary in phase only, not amplitude. In other words

Wq =W ig Gi ge ei 'g (75)

for i-1,2,...,N , g-l,2,...,T
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The transfer function of Eq.(16) now becomes

j2n(f+fo)tc N T J[21(f+fo)(ti'g-tc)+ai'g] (76)
U(f,8) - e C~ e gc igj(6

i1 g1.

The Taylor series representation is then

H(f,) e eJ2n(f+fo)tc N T eJ(2f(tig-t c)+a ig] X

i-l g=l

l~j2nt f gtilg tc) + (j2nf(tiag-tc ))2 + (77)

2

Steering the antenna array's main beam in direction 9 is

defined by the transfer function of Eq.(76) having a max-

imum amplitude when e-os  . The transfer function has a

maximum amplitude when the exponential term within the sum-

mation of Eq,(76) has a value of one. The proper choice of

weights for steering in direction es  is then

jx. -J2'rfo(t -

e j ig e ,gs-t s (78)

where t "g s  is the propagation delay ti.g for steering

angle 8 , and tc is the phase center delay tc  for

steering angle B8 a Substituting the proper phase steer-

ing weights into Eq.(76) yields

(
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j2w(f+f O)t N T
H(f,e) = e e

i-i gini

J[21rf(t ig-tc )4-2if 0((t i-t i)

The Taylor series prepresentation is

J2ir(f+f 0)t cN T J2fo[I(t i t )-(t 0-t C)

H+Jf,6) -eg- C~ )e ~ ~ +x2r~ ~- 2+(0

2 g.-1

Equation (79) is the general expression for the transfer

function of a phase steered array, assuming steering at cen-

ter frequency.

B. Linear, Equally-Spaced Array

The transfer function of Eq.(79) can be simplified fur-

ther by assuming that the array of interest has equally

spaced elements and equally spaced taps on the delay lines.

Using Eq.(4) the propagation delay at port i~g is
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tjg = (i-1)d sin e + (g-I)A (81)
C c

. i-1)r sin e + (-1) 82)
fo fo

i-1,2,...,N g=1,2,...,T

The terms are defined as

d = rA0 = spacing between antenna elements in meters

r - spacing between antenna elements in units of frac-

tional wavelength at fo

N - number of antenna elements

A - 6AO - delay between taps in meters

6 - delay between taps in units of fractional wave-

length at fo

T - number of delay line taps

A0 - wavelength at fo

Note that with this notation, an array with no tapped delay

lines corresponds to the number of taps T equal to 1 .

The transfer function can be written in closed form us-

ing a geometric series identity. Equation (79) reduces to

j2n(f+fo)(N-1 d sine + T-I Ae~in 7+ F -7 )
H(f,e) - eC

sin N(r(f+f,)-sine-wfo!sines) sinT(wf.)

d d A c (83)
sin (w(f+fo)-sine-wforsines )  sin(wfj)
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Note that for this antenna geometry we have

SN-1d T-1 (84)

Looking at Eq.(83), the leading exponential term is just the

phase center term which is also the leading term in Eq.(79).

Several observations can be made about the phase response

of the transfer function identified by Eq.(83). First, the

choice of st, ring angle 0s has no effect on the phase re-

sponse. Second, the response has a constant phase offset

associated with f0  , plus a term dependent on frequency

deviation f . In the time domain, this response results in

a constant phase shift of the array output plus a simple time

delay of the output signal. The important point is that the

phase response does not have second (or higher) order fre-

quency dependent terms and therefore does not lead to dis-

tortion of the array output signal.

To separate the effects of tapped delay lines, the

transfer function of Eq.(83) is written

H(f,e) = HE(f,e)HD(f) (85)

where
N-1 dJ2w(f+f0)( r asin6)

HE(f,O) A e X

sinN(w(f+fo )-siln6-fodin 86)

sin (!(f+fo)-sinO-wf-Ogsine6)
cc 8
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and j2n(f+f0)(T-1 And HD(f) A e rTT) sin T (rf c) (87)

sin (irf-)
c

The effects of the tapped delay lines are now entirely with-

in HD(f,) . Note that when there are no taps (i.e. T=1)

HD( f,) reduces to unity and the transfer function of a lin-

ear, equally spaced array without tapped delay lines is de-

fined by HE(f,O) . To investigate the frequency response

of H(f,6) , the response without taps (i.e. HE(f,e)) is

first reviewed then the impact due to HD(f) is anticipated

and finally the total frequency response is analyzed.

C. Transfer Function

HE(f,e) in Eq.(86) defines the transfer function of in-*

terest. The results for the rest of this paper assume broad-

side steering (i.e. 6,=O ) . With this assumption, the

transfer function becomes

j2n(f+fo)(-1-- dsine)

HE(fM ) = e X

(88)

sin N(w(f+f0 )-sine)
c

sin(w(f+f0 ).sinO)

The function has been analyzed by Raska (Ref 11). His re-

sults are based on the closed form solution of the Taylor

series expansion terms. They were verified by implementing

the open form transfer function and coefficients of Eqs (16)
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through (21). For a linear equally spaced array without taps

these coefficients are

d (N-i)1N j2Of[(i-1)dsin9 2 -sine]c ceA(6) = e (89)

i=l

N

B(6) = [ [(i-1).-sine- (N-1) d ineJ x
c 2 ~ fli=1

j nfo(ci-l)Ain- (N1 Isi ne] (90)
c 2 csn](0

e

N

= d ri- o- 0 (N-i) d 2

i-i

j2rf o[(i-l)-sine- (N-1) sine] (91)c 2 cs
e

The results are summarized graphically in the following fig-

ures. The parameters used were for a four element array

(N=4) with half wavelength spacing between elements (d=JX0 ).

The frequency response of the array is shown in Figure 6 for

several angles 0. All frequency responses in this paper are

normalized by dividing the transfer function by NxT. As we

approach array broadside the response becomes constant and

distortion at the output is minimized. Figure 7 shows the

phase response of HE(f,e) . Note that this response varies

linearly with frequency. The slope and intercept are a
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function of angle 6 For a given arrival angle 6 , the

phase response will not contribute to any signal distortion.

Figures 8, 9, and 10 are of the Taylor series coefficients

A(B), B(e), and C(e) respectively. For this particular array,

A(S), B(S), and C(O) are defined in Equations (89), (90) and

(91). Several results are of particular interest. 1-ine array

factor (A(6)) is purely real while B(8) is purely imagin-

ary. Since these terms are 900 out of phase with each other,

the derivative term in the distorted output is added in phase

quadrature to the undistorted correlation function (r(T))

From Figures 8 and 9 we note that the antenna radiation pat-

tern, A(B) , has an inverse relationship with the deriva-

tive radiation pattern, B(6) . In other words, the largest

lobes in A(6) correspond to the deepest nulls in B(e) and

vice versa. Using Figure 11 and the distortion threshold as-

sumed in Eq(36) of Log tA(e)/B(6)I6.7 , we see that the dis-

tortion term becomes significant at the nulls in the radiation

pattern A(O) . This distortion persists for ±2o about

the nulls. The third coefficient in the Taylor series, C(O)

has its strongest peak at 6=500 . This second derivative

distortion term is apparent in Figure 6. The array frequency

response has a noticeable curvature for the case of 6=500

This curvature has a second order variation with frequency.

Any second derivative distortion would not be significant in

the array's output since the multiplying term C(6) is so

small, even at 0=500
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The amplitude response of the array filter can be repre-

sented as a constant plus a term linear in frequency over a

bandwidth of approximately 15% of the center frequency

f0 (f/f 0=±.075 in Figure 6). Both terms depend upon arrival

angle e . Thus, the first term in the Taylor series is

sufficient to represent the array filter near broadside (see

0=50 in Figure 6) while the second term in the series is

strongly dominant in the vicinity of a null (see e=30 0 in

Figure 6). In the next section we assess the impact of tap-

ped delay lines on these results.

D. Transfer Function with Tapped Delay-Lines

The phase response of H(f,e) has a greater phase off-

set and steeper slope due to the addition of delay-lines.

This is apparent from the leading term in Eq.(83). As before

this term is linear in frequency and therefore produces no

distortion in the signal of interest.

The impact of HD(f) on overall frequency response of

the array is analyzed by investigating the sinM(x)
snx) form

of the response which appears both in HD(f) and HE(fe)

(see Eq (87) and (88)). The modulus of HD(f) is centered

at f/fo-O while the modulus of HE(f,e) is centered at

f/f o-i . The generic forms of these functions are shown in

Figure 12. Near the center frequency (i.e. f/fo0) the mod-

ulus of %D(f) is relatively constant. For bandwidths of

±25% of f0,1HD(f)l drops only 5% below its peak value.

These numbers are valid for T=3* and Ain) 0  . As the ratio
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, I , I I , ,

-2 -1 0 +1 +2 f
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a. Element Transfer Function

IH D(f)I

- -1 +1 1 +2 ffo
TA

b. Delay Line Transfer Function

Figure 12. Generic Frequency Response of Transfer Functions
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1/TA gets larger, the sidelobes in Figure 12b. move farther

from the origin and the frequency response of HD(f) gets

flatter. For the particular parameters used here, we would

not expect the array's frequency response to change signifi-

cantly due to the addition of tapped delay-lines. The follow-

ing figures support this conclusion.

As before the parameters used are for a four element

array (N=4) with half wavelength spacing between elements

(d=jXo) . In addition, each element has a three-tap delay-

line behind it (T=3) with quarter wavelength spacing between

taps (AffiXo) . The frequency response of the entire array

is shown in Figure 13 for the same five angles used in Figure

6. The effect of tapped delay lines is most apparent as 6

approaches broadside. At 0=00 , HE(f,e) reduces to unity

and an array without taps has a constant frequency response.

An array with taps will have a response determined by the

tapped delay-line parameters (i.e. determined by HD(f)).

For 0=50 in Figure 13 the curvature in the response due to

a second order frequency dependence of IHD(f) is readily

apparent.

The phase response of this array with delay-lines is

shown in Figure 14. As anticipated, it has a greater phase

offset and steeper slope due to the tapped delay-lines (com-

pare to Figure 7).

The similarity in frequency response of an array without

delay lines versus an array with delay lines is reflected by
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the Taylor series coefficients A(M), B(e), and c(e) which

quantify the arrays frequency dependence. Figures 15, 16,

and 17 are polar plots of these coefficients for an array

with tapped delay-lines. Comparison to Figures 8, 9, and

10 for the array without delay lines reveals little differ-

ence. Data for these six figures reveal no difference in

values for A(6) and B(O) between the two arrays. The

third term C(O) is larger for the array with delay lines,

as expected from the additional second order frequency depen-

dence supported by Figure 13. Even so, C(e) is on the order

of 10- 1 8 for all angles. This is insignificant in relation

to signal distortion, based on the values of the second de-

rivatives of signals appearing in Craddock's work (Ref 3).

For both arrays, IA(e)l is much greater than IB(e)!

(on the order of 108) everywhere except at the antenna pat-

tern nulls of 300 and 900. This is consistent with the fre-

quency response figures which show "V-shaped" nulls at e=300

and 900 . The linearity in the array response, which is

essentially unaffected by the addition of tapped delay-lines,

leads to the conclusion identified by Raska, that the output

of the array consists of the input signal and its first de-

rivative (Ref 11:112-113). Figure 18 shows the "array filter

bandwidth" versus angle as derived in Chapter II. By compar-

ing this figure to Figure 11 we see that there is no differ-

ence. The location of significant first derivative distortion,

based on a threshold of 6.7 as before, persists for 20 about
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each antenna pattern null.

In conclusion, the addition of tapped delay-lines to

phase steered arrays does not change the frequency response

of the array for moderately wideband signals in the UHF range.

This bandwidth is on the order of f/f 0=±5% or 10% band-

width. Though the phase respone changes, it remains linear

with frequency. Therefore the distortion of the array out-

put is uneffected by the addition of tapped delay-lines for

an array with fixed weights which implement phase steering at

center frequency. It should be noted however iat real sys-

tems may still perform differently with tapped delay-lines

because actual phase shifters are dispersive in frequency.

The following Chapter looks at the frequency response of an

array whose weights are adapted to noise sources in the en-

vironment.
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V Antenna Arrays with Adaptive Weights

This chapter addresses the transfer function of an antenna

array with weighting coefficients. The weights are computed

from assumed jammer parameters (power, angle of arrival, and

bandwidth) using the weight equation discussed in Chapter III.

The weights are then used to compute array transfer functions.

In Chapter IV it was shown that for phase steered arrays, the

signal output consists of the original signal plus its first

time derivative (Ref 11:112-113). The purpose of this chapter

is to determine if adaptive arrays lead to outputs with sig-

nificant higher order time derivative signal distortion. To

limit the scope of this analysis, several constraints are ap-

plied. First, for all cases the arrays are steered broadside.

Second, the input thermal noise power to the array element is

one watt.

A. Linear Array Adapted to Narrowband Jammers

In Chapter IV it was possible to derive a closed form sol-

ution for the antenna array's transfer function. That is not

possible in this chapter because of the adaptive algorithm used

to determine the weighting coefficients. For each scenario, the

assumed jammer parameters and broadside steering constraint are

used to calculate the covariance matrix (see Eqs(44) and (64)

and the quiescent weights Wq (see Eqs (75) and (78)). The

array weights are computed from Eq.(39) then used to compute the
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transfer function with Eq.(16).

In addition, the coefficients of the Taylor series ex-

pansion are calculated using Eqs.(17) through (21). These

coefficients can be used to verify the transfer function and

identify the order of frequency dependence inherent in it.

The four separate scenarios to be evaluated are for a

single jammer of 10 watts at 100 and 500 and of 1000 watts

at 100 and 50 0 . These jammer locations are measured with

respect to array broadside. In each case the transfer function

is evaluated for an array without tapped delay lines (T=1)

and for an array with tapped delay lines (T=3) . The choice

of jammer locations is based on analyses of results from

Chapter IV. With the adaptive algorithm used here, a null

can be produced at the location of a sufficiently powerful

jammer. In this analyses a jammer of 1000 watts is adequate

to produce a null. Though the transfer function is dependent

upon angle, the angle of interest is the location of the jam-

mer. At this location the value of A(6) is reduced sufficient-

ly so that higher order terms in the Taylor series may become

significant.

The antenna pattern for A(e) is shown in Figure 8 for a

particular unadapted array geometry. In this figure there are

nulls at e=300 and 900 . It is expected and was verified

that a jammer at either of these locations would not result

in adaptive weights which would produce a more optimum pat-

tern for nulling the jammer. Figure 9 shows the pattern
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associated with the next Taylor series coefficient, B(O).

The magnitude of B(6) is sufficient at almost all angles

to represent the linear variation with frequency of the as-

sociated transfer function (see Figure 6). It is anticipat-

ed that any jammer location would lead to a frequency re-

sponse which has at least a linear dependence on frequency,

as quantified by B(e) .

The distortion pattern associated with C(O) is shown

in Figure 10. The second order variation with frequency

which is associated with C(6) was not significant for phase

steered arrays, and bandwidths on the order of 15% of f0

However this was true due to the dominance of A(O) at most

angles. If a jammer is placed at e=500  , where C(O) has

its peak value, A(8) may be reduced enough to lead to ob-

servable second order frequency variations in the transfer

function of that adapted array. This research verified this

conclusion.

Based on the above, the two jammer angles chosen to be

reviewed here were e=1 00 and e=50 0  . The first angle

leads to results which do not vary significantly from the un-

adapted case. The second angle leads to different results.

1. Phase Response

For all cases investigated during this research effort,

including those in this chapter, the phase response of the

array was linear with frequency. The numerical results for
C
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the cases of a jammer located at 8=100 will be used to

illustrate this conclusion; the phase response of other

cases will not be discussed. Phase response plots for most

cases can be found in Appendix B.

Table II contains the modulus and phase values for the

Taylor series coefficients produced by jammers located at

0=100 . Three cases are addressed. First, the unadapted

array whose values are listed here for reference. Second,

the adapted array for a low power jammer of 10 watts. Last,

the case of a higher power jammer of 1000 watts. Not that

all coefficients are either purely real or purely imaginary.

The multiplying factor associated with each coefficient al-

ways results in a product which is purely real. These multi-

ply factors are those shown in Eq.(18), repeated here for

convenience

[J2n(f+fo)t ]
H(f,e) e C {A(e)+(j2nf)B(e)+(j2wf)2C(O)+...} (18)

The significance of this result is first that the complex num-

ber defined by the summation of terms in Eq.(18) is purely

real. Second, the output signal and its first derivative are

separated in phase by 900 due to the phase of A(8) and

B(M) shown. The phase response of the transfer function is

due to the sign of this summation and the leading exponential

term in Eq(18). Therefore the phase response is linear with

frequency.

7
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Table II. Taylor Series Coefficients for
Narrowband Jammer at 100.

Jammer N,T Normalized Amplitude and Phase at 100

Power (Watts) A(6) B(8) C(O)

8.233 x 10 -1 1.525 x 10-10 2.736 x 10-2
0 4,1 00 900 00

0 4,3 8.233 x 10-1 1.525 x 10- '0 1.674 x 10- 19

°
_900 900 00

10 4,1 2.008 x 10 - 2 1.525 x 10-1' 3.529 x 10- 2

00 90 1800

10 4,3 6.804 x 10 - 3 1.525 x 10-10 2.882 x 10- 2

00 90 1800

1000 4,1 2.058 x 10- 4 1.525 x 10- 10 8.586 x 10- 2

00 90o  1800

1000 4,3 6.860 x 10- 5 1.525 x 10-1 ° 4.287 x 10- 2

00 900 1800

Thermal Noise Power = 1 Watt

Jammer Bandwidth = 0% fo

d = Xo12

2. Frequency Response for a Jammer at 9=100

The two Jammer cases associated with Table II are dis-

cussed next for the T-1 geometry. Figures for the T-3

geometry can be found in Appendix C. Figure 19 is the fre-

quency response resulting from a Jammer with>10 Watts power.
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The corresponding Taylor series coefficients are in line

three of Table II. The question to be addressed for this

case and subsequent cases is what order frequency dependence

does this response have? It is concluded from Figure 19

that the dependence is linear with frequency. Therefore only

the first two coefficients are required to adequately repre-

sent IH(f,e)I . This is denoted by using a subscript 2

as shown

IH(f,e)1=IH 2 (f,e) IA(e)+(j2fff)B(e)I (92)

This approximation is verified by noting that the value for

A(M) listed in Table II corresponds well with the value of

IH(f,8)I at f/f 0=0 in Figure 19. Also, the slope of the

curve in Figure 19 is equal to 2nf 0B(e) at 6=100  . The

jammer power in this case is insufficient to produce a null

in the transfer function.

Figure 20 is the frequency response for an array adapted

to a jammer with 1000 Watts of power. The value of B(O),

both in the figure and Table II line four, is unchanged. How-

ever A(O) has a well defined null at e=100  . These re-

sponse curves are typical of results produced by a jammer

located at least 100 away from 0=50' . For bandwidths on

the order of 15% of f0  , the output of an array, either

with or without delay lines, consists of the input signal and

its first time derivative.
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3. Frequency Response for a Jammer at 8=500

For this particular array geometry, a jammer located at

8=500 produces second time derivative distortion in the ar-

ray output. Other angles are not effected in this manner as

seen in Figure 21. This figure shows the frequency response

for several angles given an array adapted to a jammer at

6=500 with 1000 watts power. Except for e=500 , all fre-

quency responses at other angles are linear in frequency for

the bandwidth of interest. The numerical values of the first

three Taylor series coefficients are in Table III for this

case and the case where jammer power is 10 watts. Also list-

ed for reference are the values for an unadapted array. Fig-

ure 22 is an expanded view for the case where the jammer power

is 1000 watts and the array does not have delay lines. Two

related observations are of interest. First, the null is

asymmetrical about f/f0=0 . Second, the curve is not lin-

ear with frequency. The second order variation with fre-

quency which leads to the asymmetrical response curve will be

investigated first.

Using the subscript notation described earlier, the fre-

quency response can be approximated by

JR(f,e)1=IH 3(f,6)1 AIA(6)+(j2nf)B(6)+(j2wf)l C(e)J (93)

Substituting the coefficient values from line five of Table

(III into this equation yields the data points which are
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Table III. Taylor Series Coefficients for
Narrowband Jammer at 500

Jammer NT Normalized Amplitude and Phase at 500

Power (Watts) A(6) B(O) C(a)

2.665 x 10-1 1.152xi0 - 0°  5.742xi0 -' 9

o 4,1

1800 -90o -18O,

0 4,3 2.665 x 10' 1.152x10 0-  6.196xi0-19

1800 -900 -1800

10 4,1 6.5-1 x 10- 1 1.152x10 0 3.796xi0 -1 9

1800 -90 -180o0

10 4,3 2.203 x 10- ' 1.152x10- 10  3.768x10- 1 9

1800 -900 -180'

1000 4,1 6.662 x 10- 5 1.152xI0 - 10  3.748x10-' 9

1800 -900 -1800

1000 4,3 2.221 x 10- 1.152x10- '0  3.748x10- 9

1800 -900 -1800

Thermal Noise Power = 1 Watt

Jammer Bandwidth = 0% fo

d = XO/2

A = Xo/4

contained in Table IV. Table IV lists these values, in column

three, along with the actual value of the response, from Eq.(16).

The error calculations in column four quantify the fact that

this approximation is reasonable near f/f0=O . For band-

widths of 12% of fo , IH3 (f,e)l is accurate to within 4%.
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Table IV. Frequency Response for
Narrowband Jammer at 500

f/f0 IH(f,e)I IH3 (f,e)I Percent error 3 - 2 100

-0.091 0.0070 0.0081" 15.1%

-0.061 0.0084 0.0088 4.1%

-0.040 0.0072 0.0073 0.8%

-0.020 0.0044 0.0044 0.5%

0.000 0.0001 0.0001 0.0%

0.020 0.0058 0.0057 0.9%

0.040 0.0130 0.0130 0.4%

0.061 0.0216 0.0221 2.7%

0.091 0.0366 0.0380 3.9%

1 2 3 4

Thermal Noise Power = 1 Watt

Jammer Bandwidth = 0% f0

Jammer Power = 1000 Watts

N=4 T=1 d=XO A= -
2g 4

Therefore, the output of this adapted array will be the input

signal and its first time derivative as before. In addition,

the signal's second time derivative could contribute to the

distorted output.

The lack of symmetry of the null in Figure 22 is due to

the dependence of this response on an odd function of fre-

quency. The odd function is defined by j2rfB(e) while the
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even function is (j2wf)2 C(9) . The null at f/f.=0 is

defined by the value of A(e) . The other null is due to

the 1800 phase difference between the above functions for

negative frequency offsets. As the jammer power is reduced,

the value of A(e) increases and the response curve is

shifted by an associated amount.

Figure 23 is the transfer function for an array adapted

to a jammer with 10 Watts, still located at 8=500 . Note

that it has the same first and second order dependence on fre-

quency. This figure is the same as Figure 22 with a constant

negative offset, defined by A(e) . This value is in line

three of Table III. It can be concluded, from the values in

Table II and Table III, that A(e) is a function of jammer

power for a given angle. Also, B(O) and C(e) are not a

function of jammer power. For unadapted arrays it was noted

that A(O) and B(O) have an inverse relationship i.e.

peaks in A(B) are nulls in B(6) and vice versa. This is

not necessarily true for adapted arrays. A null in A(6)

produced by a Jammer does not lead to a peak in B(9) at

that same location. Figures 24, 25, and 26 are polar plots

of A(e), B(O), and C(O) for an array adapted to a jammer of

1000 Watts at e-500 . By comparing these figures to equiva-

lent figures for the unadapted array (Figures 8 and 9) this

observation can be verified.

Phase response curves for adapted arrays with delay lines

0l (T-3) are in Appendix B. Appendix C contains frequency
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response curves and polar plots of coefficients. The addi-

tion of delay lines has no impact on these results.

In summary, narrowband jammers do not lead to adapted

arrays with output distortion significantly different than

that for unadapted arrays. For jammers located at 500±100,

second order derivative distortion is possible if such sig-

nals had a magnitude sufficient to offset the value of C(e)

However, existing work does not contain derivative signals

with the necessary magnitudes (Ref 3). Therefore, even for

a jammer at 500 , the results do not vary substantially

from the unadapted array case.

4. Frequency Response for Multiple Jammers

C_ The frequency responses for several multiple jammer

cases are reviewed in this section. The first case is de-

fined by two jammers located one degree apart, each trans-

mitting 1000 Watts of power. Figure 27 contains the fre-

quency response curves, for the associated adapted array, at

location 0-I00 and -11° i.e. in the direction of the jam-

mers. Though the array geometry would support a null on each

Jammer, only one degree of freedom was used. The weights cal-

culated by the algorithm result in a null located between the

Jammrs at 0-10.50 . The values of A(S) at 100 and 110

are non-zero and nearly equal, due to the symmetry of jane

powers. The transfer functions in Figure 27 are approximated

oby the first two terms in the Taylor series expansion. The
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single nulls shown on each side of the carrier frequency occur

due to the 1800 phase shift in A(O) at 10.5 . The null

frequencies are defined by the points at which the magnitude

of the first and second Taylor series terms are equal.

That is

A(e) f (9411 (94)2wfOB(6)'lT-
6=10*,110

Evaluating this equation for the coefficient values at 0=100

and 110 produces null frequency ratios of .0492 and -.0452

respectively. Figure 27 verifies this calculation.

The second case investigated is defined by two jaNmers

of equal power located 50 degrees apart. Figure 28 contains

the frequency response curves for e=100 and 600 which is

where the jammers are located. The adapted weights result in

a spatial null being produced in the direction of each jammer.

In general, an N element array has N-1 degrees of freedom

and can produce N-1 nulls over its field of view (Ref 12:5).

The four element array used in this research will support

three nulls in the antenna pattern.

Figure 29 contains the response curves for the third

multiple jammer scenario. Three equal power jammers are

placed at 0100 , 350 , and 600 . Note that a null has

been placed on each jamer. The response curve in direction

0-60' reveals a second order frequency dependence, as dia-

Q cussed for the scenarios involving Jammers at 0-500 . This
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illustrates the spatial breadth of this distortion. Though

not quantified, this persists for 6=500±100 for bandwidths

on the order of 30% of f0  .

If a fourth jammer is added to this scenario, the adap-

tive algorithm would be overconstrained. There would be more

interference sources present than spatial degrees of freedom.

Figure 30 shows the response curves for an overconstrain-

ed array. A fourth jammer has been added at e-850 . The

adapted weights result in no nulls being placed in the direc-

tion of the jammers, though the unadapted array pattern null

at =90.0 tends to null the jammer located at e=850 . This

figure is for an array geometry including tapped delay lines.

As shown in Chapter IV, the transfer function associated with

( delay lines is independent of spatial parameters. Therefore

it is expected that they would not increase the spatial de-

grees of freedom associated with an array adapted to zero

bandwidth jammers. Figure 30 verifies this since one addition-

al degree of freedom would have resulted in a null being plac-

ed on each of the four jammers. Therefore delay lines can not

be substituted for antenna elements to relieve the problem of

an overconstrained array (Ref 12:14).

In summary, adding multiplenarrowband jammers to the noise

environment does not effect the distortion results.

B. Linear Array Adapted to Broadband Jammer

The transfer function of an array adapted to a broadband

jammer is investigated in this section. The single broadband

96
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jamners is represented as a sum of narrowband jammers each

at a different frequency, but all at the same spatial loca-

tion. Four scenarios are used to investigate the impact of

delay lines and jammer bandwidth on the array's frequency

response. The associated phase responses can be found in

Appendix B. All scenarios use a jammer with a bandwidth

which is 4% fo . The total transmitted power is 1000 Watts.

This power is divided evenly between five uncorrelated, dis-

crete spectral lines. These lines are spaced at constant

frequency increments centered about f0  • The factors

which differentiate each case are jammer location and the

presence, or absence, of tapped delay lines.

1. Frequency Response for a Jammer at 0=100 . Figure

31 is the frequency response for the adapted array without

tapped delay lines. To evaluate the depth of the null, we

define f/fo=±.02 as the endpoints of the bandwidth of in-

terest, since the jammer has this same bandwidth. At these

points, the array without delay lines has a response which

is down 23.0db relative to a normalized peak amplitude of Odb.

Figure 32 contains the response associated with an adapted

array with delay lines. The null depth for the bandwidth of

interest is 29.2db. The addition of delay lines leads to an

increase of 6.2db in null depth. The result drawn from this

comparison is that the addition of delay lines to an array im-

proves the null bandwidth in the direction of a broadband jam-

mier.
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Table V lists the Taylor series coefficients associated

with Figures 31 and 32. The slope of the response curves is

determined by 2nB(e) . Looking at Table V, the values for

B(e) do decrease, consistent with Figures 31 and 32. The

adapted array with delay lines has the smallest value for

B(B). This is consistent with the broader nuller seen in the

response curve for that array. For this broadband case, the

first two Taylor series expansion terms are necessary to ap-

proximate IH(f,e)! . This was verified using the values in

Table V.

2. Frequency Response for a Jammer at e-500 . Figures

33 and 34 show the frequency responses of an array without

and with tapped delay lines for a broadband Jammer located at

( e-50 . For endpoints still defined by the bandwidth of the

Jammer, the improvement in null depth is 2.5db. This can be

verified by comparing Figures 35 and 36 which are an expanded

view of the response curves for the same cases as above. The

figures also show the improvement in frequency response symme-

try about f0 as delay lines are added. This change is re-

flected in the Taylor series coefficient associated with first

order frequency coefficient, B(e) . Table VI contains the

coefficient values for these two cases. These scenarios sup-

port the observation that the first three terms in the Taylor

series are necessary to approximate H(f,e) . It can be ex-

pected from looking at Figure 34 and Table VI that as an ar-

rays frequency response becomes more symetrical about fo

101I __



Table V. Taylor Series Coefficients for
Broadband Jammer at 100

N,T Normalized Amplitudes and Phase at 100

A(e) B(e) C(e)

4,1 2.016 x 10-4 1.175 x 10- 10 4.293 x I0- 2 1

0 900 1800

6.450 x 10- 5 2.614 x 10- 11 4.253 x 10 - 21

00 90 1800

Thermal Noise Power - 1 Watt

Jammer Bandwidth - 4% fo

Jammer Power - 1000 Watts

d - ,o/2

A - Xo/4

Table VI. Taylor Series Coefficients for
Broadband Jammer at 500

N,T Normalized Amplitude and Phase at 500

A(e) B(e) C(e)

4,1 4.288 x 10- 4 1.712 x 10-11 3.748 x 10- 19

1800 -900 1800

4,3 3.822 x 10- 4 5.328 x 10 -12 3.727 x 10- 19

1800 -900 -1800

Thermal Noise Power - 1 Watt

Jammer Bandwidth - 4% f o

Jammer Power - 1000 Watts

0t d Xo/2 A =No/4
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and its second order frequency dependence dominates the

response, the output of the array may contain no distorted

signal. This is true for those desired signals whose second

time derivative is insignificant, since it is that deriva-

tive term which is scaled by C(O) . The shift towards sym-

metry for these cases indicates the decreasing magnitude of

B(6) .

It is of interest to know whether the bandwidth of the

null could be due to the transfer function of a delay line

behind an antenna element. To investigate this, the transfer

function of the delay line behind the first element of the

array was analyzed. The particular array used was the one

associated with Figure 36. The weights for the three ports

of element one are listed in Table VII. The associated trans-

fer function is calculated for several frequency values in

Table VIII. The transfer function for the delay line is de-

fined by Eq.(16) using N-i . It can be concluded from the

frequency response data points in the second column of Table

VIII that the null breadth is not due to the delay line alone.

This is expected since this response is independent of spatial

location of the signal of interest.

In the course of this research, results were compared to

other reference works to verify the validity of the computer

program used to produce frequency response curves. Results

from adapted array geometries without delay lines were checked

versus Gabriel and verified as correct (Ref 6). Results from
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(Table VII. Weights for Broadband Jammer at 500

Weight Modulus Phase (Degrees)

Wl, .69456 90.27

w1,2 .71794 -2.64

w1,3 .74195 -95.42

Thermal Noise Power = 1 Watt

Jammer Bandwidth = 4% f0

Jammer Power = 1000 Watts

N-4 T-3 d=Xo/2 A=Xo/4

Table VIII. Transfer Function of Delay Line for

Broadband Jammer at 500

f/fo Normalized Modulus Phase (Degrees)

-.05 0.179 -68.3

-.04 0.178 -68.9

-.03 0.179 -69.6

-.02 0.179 -70.3

-.01 0.179 -70.9

0.00 0.179 -71.6

0.01 0.179 -72.3

0.02 0.180 -72.9

0.03 0.180 -73.6

0.04 0.180 -74.3

0.05 0.179 -75.0

Thermal Noise Power - 1 Watt

Jammer Bandwidth - 4% f0

Jammer Power - 1000 Watts

N-I T-3 d-A,/2 A=A)e/4
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adapted array geometries with delay lines, i.e. with fre-

quency dependent weights, were checked versus Compton and

discrepancies found (Ref 2). The null depths resulting from

his research could not be.duplicated. To illustrate the

differences, Figure 37 should be compared to Compton's

Figure 22 (Ref 2:34). Both scenarios involve a two element

linear array with three tap delay-lines. The adapted weights

are in response to a jammer at e=500 with 4% f0 band-

width. Compton's response curve has endpoints, at f/fo-±.02,

which are down 43db versus Figure 37 which is down 22db. His

null at f/fO=0 is down 73db versus Figure 37 which is down

42 db. Two areas were investigated to explain these dis-

crepancies. First, the adapted weights associated with jam-

mers having non-zero bandwidth were compared to weights re-

sulting from jamers into zero bandwidth. Second, the co-

variance matrices were compared.

Table IX contains the weights associated with an array

adapted to a zero bandwidth jammer. Only the weights of ele-

ment one are listed here . It should be noted that the weights

have phases which are 900 apart. This is consistent with the

delay line spacing of XO/4 . Comparing this to Table VII, it

is apparent that the weights associated with a 4% f0 bandwidth

Jammer are dependent on the jammer bandwidth. They are not 900

apart as above. The conclusion is that the adaptive algorithm

implemented for this.research does produce weights which are

dependent on jammer bandwidth. Since numerical date, such as

109
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Table IX. Weights for Narrowband Jammer at 500

Weight Modulus Phase (Degrees)

W1,1  .772 81.03

W1,2  .772 -8.97

W1, 3  .772 -98.97

Thermal Noise Power = 1 Watt

Jammer Bandwidth = 0% f0

Jammer Power = 1000 Watts

N=4 T=3 d=XO/2 A=XO/4

values of the weights, are not presented in Compton's work,

the weights associated with Figure 37 can not be quantitatively

compared to see if a difference exists. However, it can be

assumed from the response curves that this is true. The im-

portant point is that the computer program used here produces

correct results based on the covariance matrix used here. The

discrepancy in results can be attributed to that matrix.

The program used here calculates a covariance matrix de-

fined by Eqs.(44) and (47). From these equations it should

be noted that the information used in this matrix comes only

from the interference and thermal noise sources. Compton

makes use of the desired signal's correlation function in

addition to the above. The point to be made is that the a

priori knowledge of the desired signal is exploited more

fully in Compton's research than in the research presented

here. The only a priori knowledge of the desired signal
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assumed here is its location, which is used to determine the

quiescent weights in Eq.(78). It is this difference which is

assumed to produce different adapted weights and therefore

different frequency response curves.

In this chapter several array transfer functions were

analyzed. The array weighting coefficients were determined

by an algorithm using given noise information. The conclusion

to be drawn is that, for some locations within an adapted

array's field of view, the associated transfer function re-

quires the first three Taylor series terms to be adequately

represented. Also, the presence of tapped delay-lines does

not significantly improve the array's performance for scen-

arios involving zero bandwidth jammers. They do improve

performance when non-zero bandwidth jammers are involved.

For the particular cases investigated here, the improvement

was 6.2db and 2.5db for a jammer located at 100 and 500

respectively.
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VI Conclusions and Recommendations

This thesis has investigated the effects of adaptive

antenna arrays with tapped delay-lines on wideband signals.

The array was analyzed as a filter and its transfer function

derived. The properties of the output waveform were determin-

ed by expanding the transfer function in a Taylor series. The

conclusions drawn from Chapter II follow.

(1) The output of an array contains an infinite sum of

components consisting of the input signal and all the 
nt h

order time derivatives of the signal.

(2) Each component is weighted by a complex number

(Taylor series coefficient) that adjusts its phase and ampli-

tude before the components are added together.

In Chapter III we looked at the optimum weights to pro-

duce maximum signal power and minimum noise power at the ar-

ray output. The emphasis was on the adaption algorithm and

the noise covariance matrix in particular. The conclusion

follows.

(3) For purposes of adapting the array weights, a

broadband noise source can be modelled very well by a group

of narrowband noise sources of appropriate power and frequency.

In Chapter IV we investigated the transfer functions for

arrays using phase steering of the main beam. The beam was

steered broadside and the frequency and phase response anal-

yzed for various signal arrival angles.
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(4) The signal term dominates the output except in the

vicinity of nulls, where the first Taylor series coefficient

vanishes. Then the first derivative term becomes the main

output of the array.

(5) The addition of tapped delay-lines to phase steer-

ed arrays does not change their frequency response for mod-

erately wideband signals (f/fo=10%) .

In Chapter V we analyzed the transfer functions of arrays

adapted to reduce interference from narrowband then broadband

jammers. The conclusions follow.

(6) For both phase steered and adapted linear arrays the

signal and its derivative are separated in phase by 900.

(7) One jammer location resulted in the frequency re-

sponse having a strong second order variation with frequency.

Therefore, three, rather than two, Taylor series terms were re-

quired to represent this response accurately. However, for

the modulation techniques reviewed in Craddock's work, none

had a second derivative term of sufficient magnitude to be

present at the output (Ref 3). Therefore, for all cases in-

vestigated the array output consists of the signal and its

first time derivative only.

(8) Increasing Jammer bandwidth reduced the Taylor

series coefficient associated with a first derivative sig-

nal at the array output (assuming an array with tapped delay-

lines). This results in broader nulls and less first deriva-

C tive signal distortion.
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(9) The addition of tapped delay-lines improves array

performance when the noise environment contains broadband

jammers. For the particular array geometry and noise en-

vironment investigated, the improvement in null depth, for

the 4% f0 bandwidth of the jammer, was 6.2db with a noise

source at 100 and 2.5db with a noise source at 500.

(10) The addition of tapped-delay lines does not in-

crease the spatial degrees of freedom which an array has.

(11) The inverse relationship between the first and

second Taylor series coefficients (A(8) and B(O)) does not

hold true in general. A null produced in the direction of

a jammer does not lead to a corresponding peak in B(e).

The analysis performed in this thesis indicates areas

whether farther research is warranted. The following are

recommended.

(1) The results of this research are based on broad-

side steering of the array's main beam. In Chapter IV, the

transfer function of an array is shown to be dependent upon

steering angle (see Eq.(86)). Research should be done to

verify whether these results are valid for any choice of

steering angle.

(2) The signal distortion derived here is based on a

steady state analysis. Research should be done to analyze

the transient response of the array. Particular emphasis

should be placed on how various transient conditions alter

the desired signal at the array's output.
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(3) The results presented here could be analyzed from

an adversary role. It is apparent that jamming signals with

high power in the derivative term would be difficult to null.

Research could be done to identify signals whose correlation

function has a first derivative signal with particularly high

power.

(4) A quantitative analysis should be done to investi-

gate further the discrepancy identified between results pre-

sented here and Compton's work.
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Appendix A: Perturbation Analysis

It is generally accepted that there exists a duality be-

tween the frequency domain and spatial domain in the vicinity

of an antenna pattern null. In the course of the research for

this paper, this relationship often appeared when graphically

looking at frequency response IH(f,e)I versus frequency

deviation f and antenna pattern IA(8)I versus angle 6

To analytically investigate this duality relationship, two

perturbation analyses were done. The first was done in the

spatial domain by varying angular deviation 30 about null

angle eN given that f-0 . The second was done in the fre-

quency domain by perturbing frequency deviation f about cen-

ter frequency f* given that 0-0 .

This analysis is done for an equally spaced linear array

without tapped delay lines. From Eq.(88) the amplitude re-

sponse of the transfer function for this case is given by

Isin N[W(fO+f)dsine(]

IHE(f'e)I- sin [i(fo+f)-sinB]

Written more explicitly, in light of the variables to be per-

turbed, this can be written as

sin N([,(fo+f) sin(e +3e)]
1%(fc+f'O+e~l - a N (A-2)

sin [(fo+f)rdsin(eN+3e)]

Null angle eN is defined at center frequency. Using Eq.(A-2),
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the null angles are given by

MN g in-1(N... c) , -2..Nl(A-3)

The analysis which follows is done assuming 0 N is defined

an the first null angle (i.e. i-1i). This choice does not

effect the qualitative results.

First, performing the analysis in the spatial domain

given f-0 and using small angle trigonometric approximations

we have

In f 830) - sinN[irfOsdein(e +30)]
' ' ' ''6 + 0 ) c s a f s i e N + 3 )

I simNrwfAQsine cs

( - 'nN oacoseNsie)

si5[wfel(5ine co53e+cos0Nsinae)]

Is I aN [w f eA (s in 8N 3 co 8 )

I ~~ Sffg(ilN+30cON) A4

Equation (A-4) is accurate to within 11 for 30 on the order

of W6 . Substituting the expression for e*N given by Eq.

(A-3) for the first null angle into Iq.(A-4) yields

1H1(f$.0 1+30)I (A1313

where
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c foA I (A-6)

Note the e is a constant whose value is determined by the

antenna array geometry. Equation (A-5) is the general form

of the solution in the spatial domain.

Performing the analysis in the frequency domain given

36-0 and the same value for eN leads to

sinN[ff(f+fo)-sinN
I(f+fo,e N)c NJ

sin[ (f+f0 )gsinEN]

r 1I

sinN [i(f+fO)Asin(sin - 1o) 1

sin w(f+fO)!sin(sin-' 1

( Nfo-

siln! ir f+1)(A7N -

Equation (A-7) is the general form of the solution in the fre-

quency domain.

Conclusions can be drawn by comparing Eqs (A-5) and (A-7).

The antenna pattern defined in Eq.(A-5) and the frequency re-

sponse defined in Eq.(A-7) have the same generic form. Plot-

ting these functions versus independent variables 3e and

f/f, respectively will yield identical curves if f/f0 is

scaled by the constant e given in Eq.(A-6). These results are

valid in the vicinity of an antenna pattern null (aO-±6 ° ) for

any given linear, equally spaced array.
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Appendix B: Phase Response Figures

This appendix contains the phase response plots associat-

ed with the frequency response figures in Chapter IV, V and

Appendix C. As noted in the body of this report, all re-

sponse curves here show a linear variation with frequency.

The abrupt change of phase in these figures is associated

with the change in sign of the modulus of the transfer func-

tions.
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( Appendix C: Frequency Response Figures

This appendix contains frequency response plots which

support the conclusions in the body of this paper. Also

included are polar plots of some Taylor series coefficients.
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